

Fig. 3. The superposition of the present molecule (darker line) and the ANDEDP10, HMANDR and MANDIA10 (lighter line) molecules. Atoms C5 through C17 were used to superimpose the molecules.

Ferguson, Marsh, Midgley & Whalley, 1978). The superposition of these three molecules and the title molecule is shown in Fig. 3. Atoms C5 through C17 were used in the program *FITMOL* (Rohrer & Smith, 1980) to superimpose the four molecules. The B, C and D rings of the molecules fit one another very closely but the A rings adopt different conformations, ranging from chair to boat.

The side chain at C17 belongs to the most populated conformer A (Duax, Griffin, Rohrer & Weeks, 1980).

The authors express their appreciation to Dr Andrzej Szyczewski from the Adam Mickiewicz University for providing crystals. This work was supported by project RP.II.10 from the Polish Ministry of National Education.

References

- ALLEN, F. H., KENNARD, O. & TAYLOR, R. (1983). Acc. Chem. Res. 16, 146-153.
- CARRELL, H. L., GLUSKER, J. P., COVEY, D. F., BATZOLD, F. H. & ROBINSON, C. H. (1978). J. Am. Chem. Soc. 100, 4282–4289.
- Cox, P. J., MKANDAWIRE, G. J. & MALLISON, P. R. (1981). Acta Cryst. B37, 727-729.
- DUAX, W. L., GRIFFIN, J. F., ROHRER, D. C. & WEEKS, C. M. (1980). *Lipids*, 15, 783–792.
- DUAX, W. L. & NORTON, D. A. (1975). Atlas of Steroid Structure, Vol. 1, p. 18. New York: Plenum.
- FERGUSON, G., MARSH, W. C., MIDGLEY, J. M. & WHALLEY, W. B. (1978), J. Chem. Soc. Perkin Trans. pp. 272-276.
- GRIFFIN, J. F., DUAX, W. L. & WEEKS, G. M. (1984). Atlas of Steroid Structure, Vol. 2, p. 21. New York: Plenum.
- JOHNSON, C. K. (1970). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- MOTHERWELL, W. D. S. (1976). PLUTO. A program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- ROHRER, D. C. & SMITH, G. D. (1980). FITMOL. In PROPHET Molecules, edited by W. RINDONE & A. KUSH. Cambridge, MA: Bolt Beranek and Newman.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1986). In Crystallographic Computing 3, edited by G. M. SHELDRICK, C. KRÜGER & R. GODDARD, pp. 175–189. Oxford Univ. Press.

Acta Cryst. (1991). C47, 684-686

Structure of an Ascochlorin Derivative (AS-6)

BY Y. NAWATA,* I. MATSUURA, T. HOSOKAWA, M. SAWADA AND K. ANDO

Research Laboratories, Chugai Pharmaceutical Co. Ltd, Takada, Toshima, Tokyo 171, Japan

(Received 9 July 1990; accepted 29 August 1990)

Abstract. 2-Chloro-4-formyl-5-hydroxy-3-methyl-6- $\{3-\text{methyl-5-}[(1R,2S,6R)-1,2,6-\text{trimethyl-3-oxocyclo-hexyl}]-(2E,4E)-2,4-pentadien-1-yl\}phenoxyacetic$

acid, AS-6 (1), $C_{25}H_{31}ClO_6$, $M_r = 462.98$, triclinic, P1, a = 11.8423 (7), b = 12.9348 (10), c = 8.3598 (9) Å, $\alpha = 103.49$ (1), $\beta = 101.11$ (1), $\gamma = 87.02$ (1)°, V = 1221.8 Å³, Z = 2, $D_x = 1.258$ g cm⁻³, λ (Cu K α) = 1.5418 Å, $\mu = 16.878$ cm⁻¹, F(000) = 492, T = 298 K, final R = 0.059 for 3978 unique reflections $[F_o^2 > 2\sigma(F_o^2)]$. The asymmetric unit contains two AS-6 molecules, of which conformations are pseudo-mirror symmetric to each other. The molecules are held together by hydrogen bonds between the carboxy groups to form a dimer.

Experimental. Colorless plates of title compound were grown from benzene/cyclohexane $(56:44 \nu/\nu)$ solution. Crystal size $0.50 \times 0.45 \times 0.13$ mm, Enraf-Nonius CAD-4 κ -cradle diffractometer, Cu K α

(1) R= CH₂COOH (2) R= H

0108-2701/91/030684-03\$03.00

© 1991 International Union of Crystallography

^{*} To whom correspondence should be addressed.

(Ų)

Table 1. Final fractional coordinates and equivalent isotropic temperature factors for non-H atoms with e.s.d.'s in parentheses

 $\boldsymbol{B}_{\rm eq} = (4/3) \sum_i \sum_j \boldsymbol{\beta}_{ij} \, \boldsymbol{a}_i \, \boldsymbol{a}_j.$

	x	У	Z	$B_{eq}(A^{2})$
Cl	0.799	0.753	0.176	5.27 (4)
C(1)	0.6143 (5)	0.5453 (5)	0.3074 (7)	3.7 (1)
C(2)	0.5026 (5)	0.5886 (5)	0.2747 (7)	3.8 (1)
C(3)	0.4804 (5)	0.6809 (5)	0.2143 (7)	3.8 (1)
C(4)	0.5753 (5)	0.7290 (5)	0.1818 (7)	3.6 (1)
C(5)	0.6871 (5)	0.6856 (4)	0.2172 (7)	3-3 (1)
C(6)	0.7065 (5)	0.5954 (5)	0.2748 (7)	4·0 (1)
C(7)	0.6279 (7)	0.4487 (5)	0.3664 (9)	5.2 (2)
O(8)	0.5499 (6)	0.4013 (5)	0.3931 (7)	8.1 (2)
O(9)	0.4130 (4)	0.5432 (4)	0.3014 (6)	5.4 (1)
O(10)	0.5606 (4)	0.8154 (3)	0.1145 (6)	4·8 (1)
C(11)	0.5848 (7)	0.9155 (5)	0.2290 (9)	4.8 (2)
C(12)	0.8275 (6)	0.5488 (6)	0.3089 (9)	5.2 (2)
C(13)	0.3622 (5)	0.7227 (6)	0.1720 (8)	4.6 (2)
C(14)	0.3162 (5)	0.7889 (6)	0.3208 (8)	4.7 (2)
C(15)	0.2186 (5)	0.7723 (5)	0.3689 (7)	3.5 (1)
C(16)	0.1821 (5)	0.8503 (6)	0.5070 (7)	4·1 (1)
C(17)	0.0862 (5)	0.8468 (5)	0.5649 (7)	3.6 (1)
C(18)	0.0406 (5)	0.9255 (5)	0.7037 (8)	3.8 (1)
C(19)	- 0·0756 (6)	0.9689 (6)	0.6330 (8)	4.9 (2)
C(20)	-0.1277 (7)	1.0403 (8)	0.771 (1)	7.7 (2)
C(21)	-0.1469 (7)	0.9853 (9)	0.907 (1)	7.2 (2)
C(22)	-0.0428 (7)	0.9251 (8)	0.9620 (8)	6.7 (2)
C(23)	0.0217 (5)	0.8588 (6)	0.8280 (7)	4.6 (1)
C(24)	0.1410 (6)	0.6751 (7)	0.2895 (9)	6.3 (2)
C(25)	0.1255 (6)	1.0128 (6)	0.7886 (9)	5.0 (2)
C(26)	– 0·0676 (9)	1.0345 (8)	0.503 (1)	9.8 (3)
O(27)	<i>−</i> 0·0099 (6)	0.9239 (7)	1.1082 (7)	9.5 (2)
C(28)	0.1298 (8)	0.8128 (7)	0.9125 (9)	6.8 (2)
C(29)	0.5919 (6)	0.9964 (5)	0.1301 (9)	4.9 (2)
O(30)	0.6324 (5)	1.0871 (4)	0.2278 (7)	6.8 (1)
O(31)	0.5668 (5)	0.9785 (4)	- 0.0204 (6)	6.4 (1)
CI*	-0.5877(2)	0.4522 (2)	0.8488(2)	6.14 (4)
	-0.4050(5)	0.6591 (5)	0.7177(7)	3.8 (1)
C(2*)	- 0.2030 (5)	0.6163 (6)	0.7491 (7)	3.9(1)
$C(2^{*})$	-0.2741(5)	0.5256 (5)	0.8102(7)	3.7 (1)
$C(4^{*})$	-0.3673(5)	0.4781(5)	0.8369 (7)	3.6 (1)
C(5*)	-0.4783(5)	0.5158 (6)	0.8034 (8)	4.2 (1)
C(6*)	-0.5021(5)	0.6090 (5)	0.7462 (7)	3.5 (1)
C(7*)	-0.4223(7)	0.7578 (7)	0.6563 (9)	5.8 (2)
0(8*)	-0.3429 (5)	0.8018 (4)	0.6191 (6)	6.0 (1)
0(9*)	-0.2013(4)	0.6642 (4)	0.7190 (6)	5.4 (1)
O(10*)	-0.3454(5)	0.3912 (4)	0.9085 (6)	5.2 (1)
C(11*)	- 0.3700 (7)	0.2941 (6)	0.8032 (9)	6.7 (2)
C(12*)	-0.6209 (6)	0.6482 (8)	0.7139 (9)	6.4 (2)
C(13*)	-0.1499 (6)	0-4865 (7)	0.8556 (8)	5.4 (2)
C(14*)	-0.1019 (5)	0.4192 (5)	0.7108 (7)	3.8 (1)
C(15*)	- 0.0023 (5)	0.4373 (5)	0.6607 (7)	4.3 (1)
C(16*)	0.0308 (5)	0.3564 (5)	0.5214 (8)	3.9 (1)
C(17*)	0.1312 (5)	0.3548 (6)	0.4687 (8)	4.3 (1)
C(18*)	0.1666 (5)	0.2752 (5)	0.3234 (7)	3.7 (1)
C(19*)	0.1902 (6)	0.3388 (5)	0.1946 (8)	4.1 (1)
C(20*)	0.2484 (6)	0.2741 (5)	0.0288 (8)	4.6 (1)
C(21*)	0.3547 (6)	0.2152 (6)	0.127 (1)	6.5 (2)
C(22*)	0.3404 (6)	0.1589 (6)	0.2551 (9)	5.8 (2)
C(23*)	0.2876 (6)	0.2279 (6)	0.4008 (9)	5-3 (2)
C(24*)	0.0692 (6)	0.5291 (6)	0.7393 (9)	4.9 (2)
C(25*)	0.0797 (7)	0.1863 (6)	0.2410 (9)	5.0 (2)
C(26*)	0.0798 (8)	0.3932 (7)	0.120 (1)	6.4 (2)
O(27*)	0.3565 (6)	0.0644 (5)	0.2450 (9)	9.3 (2)
C(28∓)	0.2806 (8)	0.1/06 (/)	0.034 (1)	0·8 (2) 5.4 (2)
C(29*)	- 0.3832 (0)	0.1220 (0)	0.8067 (5)	5.4 (2)
U(30*)	-0.4222 (5)	0.2202 (4)	0.8007 (0)	7.1 (7)
U(31*)	- U-3501 (6)	0.2303 (3)	1.0424 (7)	/1 (2)

radiation, graphite monochromator, $\theta - 2\theta$ scan with scan speed $3.30-5.49^{\circ}$ min⁻¹ in θ , scan width (0.7 + $0.14\tan\theta)^{\circ}$. Range of indices, $-14 \le h \le 14, -16 \le 14$ $k \le 16$, $0 \le l \le 10$ (2 $\theta < 150^{\circ}$). Lattice constants determined based on 25 2θ values ($27 < 2\theta < 50^{\circ}$). Variation of standard < 1.3%; 5037 unique reflections measured; 3978 observed reflections with $F_o^2 >$ $2\sigma(F_{\alpha}^{2})$. No corrections for absorption. Structure

Table 2. Selected bond distances (Å) and angles ($^{\circ}$) with e.s.d.'s in parentheses

685

C(2)-C(13)	1.483 (9))	C(3*)-C(13*)	1.537 (9)
O(10) - C(11)	1.424 (1	7)	$O(10^*) - C(11^*)$	1.364 (8)
C(11)-C(29)	1.491 (1	1)	C(11*)-C(29*)	1.467 (13)
C(13) - C(14)	1.515 (9)) 	$C(13^*) - C(14^*)$	1.506 (9)
C(14)-C(15)	1-336 (9))	C(14*)-C(15*)	1.373 (10)
C(15) - C(16)	1.463 (8	si	$C(15^*) - C(16^*)$	1.473 (8)
C(16)-C(17)	1.324 (9))	C(16*)-C(17*)	1.343 (9)
C(17) - C(18)	1.519 (8	3)	$C(17^*) - C(18^*)$	1.510 (8)
C(29)-O(30)	1.317 C	ń	C(29*)O(30*)	1.246 (9)
C(29)-O(31)	1.205 (8	3)	C(29*)O(31*)	1.278 (9)
$\alpha(0) = \alpha(1) = \alpha(0)$	0)	107.9 (6)	0(10*)	(20*)	111.7 (6)
	7)	114.2 (5)	C(2*) - C(12*) - C(12*)	(22)	114.8 (5)
		114.2 (3)		(15=)	114 0 (5)
C(13) - C(14) - C(13))	126.4 (6)		(15*)	120.4 (0)
C(14)—C(15)—C(1)	6)	118-9 (6)	$C(14^{+}) - C(15^{+}) - C(15$	(16*)	110.2 (0)
C(15)-C(16)-C(17)	7)	125-9 (6)	C(15*)—C(16*)—C	(17*)	124.5 (6)
C(16)-C(17)-C(13)	8)	129-2 (5)	C(16*)-C(17*)-C	(18*)	126.0 (6)
C(11)-C(29)-O(3	0)	111-3 (6)	C(11*)-C(29*)-O	(30*)	120.5 (7)
C(11)-C(29)-O(3	1)	123.5 (6)	C(11*)-C(29*)-O	(31*)	116.5 (6)
O(30)-C(29)-O(3	1)	125-1 (7)	O(30*)-C(29*)-O	(31*)	122.8 (8)

Fig. 1. A perspective view of the molecule with numbering scheme, showing the correct absolute configuration.

solved by direct methods with MULTAN11/82 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1982). Refined by full-matrix least squares on F. The locations of the carboxyl, hydroxyl and methyl H atoms were found on difference Fourier maps. Those of the other H atoms were calculated stereochemically. Non-H atoms refined with anisotropic thermal parameters. H atoms with the isotropic thermal parameters ($B = 5.0 \text{ Å}^2$) were added in the calculation of structure factors. $\sum w(|F_o| - |F_c|)^2$ minimized; w = 1.0 for $|F_o| < 89.27$, $w = (89.27/F_o)^2$ for $|F_a| \ge 89.27$. Final R = 0.059, wR = 0.60, S =9.49 for 578 variables, secondary-extinction factor (g) $3.40(9) \times 10^{-6} [|F_o| = |F_c|/(1 + gIc)]; (\Delta/\sigma) <$ 0.46, largest peak in final ΔF map $+0.42 \text{ e} \text{ Å}^{-3}$; atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV); programs used: Enraf-Nonius *SDP* (Frenz, 1980), *ORTEPII* (Johnson, 1976). The structure of the title compound is shown in Fig. 1. Positional parameters and equivalent values of the anisotropic temperature factors are given in Table 1, selected bond distances and angles are listed in Table 2.*

Related literature. Ascochlorin (2) is a terpenoid antibiotic (Tamura, Suzuki, Takatsuki, Ando & Arima, 1968), and the structure was elucidated by X-ray analysis (Nawata, Ando, Tamura, Arima & Iitaka, 1969; Nawata & Iitaka, 1971). The title compound is a 4-O-carboxymethyl derivative of ascochlorin (Hosokawa, Matsuura, Takahashi, Ando &

Tamura, 1990) and is an antidiabetic agent (Hosokawa, Ando & Tamura, 1985).

References

- FRENZ, B. A. (1980). Enraf-Nonius structure determination package. Version 17. College Station, Texas, USA.
- HOSOKAWA, T., ANDO, K. & TAMURA, G. (1985). Diabetes, 34, 267–274.
- HOSOKAWA, T., MATSUURA, I., TAKAHASHI, H., ANDO, K. & TAMURA, G. (1970). Japanese Patent No. 1556883.
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCO, J.-P. & WOOLFSON, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- NAWATA, Y., ANDO, K., TAMURA, G., ARIMA, K. & IITAKA, Y. (1969). J. Antibiot. 22, 511-512.
- NAWATA, Y. & IITAKA, Y. (1971). Bull. Chem. Soc. Jpn, 44, 2652-2660.
- TAMURA, G., SUZUKI, S., TAKATSUKI, A., ANDO, K. & ARIMA, K. (1968). J. Antibiot. 21, 539–544.

Acta Cryst. (1991). C47, 686-687

Triethylammonium 3,3,6,6-tetrathioxocyclodi(phosphadithianate) at 178 K

BY PETER G. JONES AND ANDREAS WEINKAUF

Institut für Anorganische und Analytische Chemie der Technischen Universität, Hagenring 30, 3300 Braunschweig, Germany

(Received 31 July 1990; accepted 20 August 1990)

Abstract. $[(C_2H_5)_3NH]_2[P_2S_8]$, $M_r = 522.9$, monoclinic, $P2_1/c$, a = 6.929 (3), b = 13.157 (7), c = 13.447 (5) Å, $\beta = 98.07$ (3)°, V = 1213.8 Å³, Z = 2, $D_x = 1.43$ Mg m⁻³, F(000) = 520, λ (Mo K α) = 0.71069 Å, $\mu = 0.75$ mm⁻¹, T = 178 K, R = 0.026 for 2396 reflections. The anion P₂S₄ ring is exactly centrosymmetric and possesses a chair conformation. The axial P—S bond is appreciably shorter than the equatorial (1.952, 1.987 Å). The anion and cation are connected by a hydrogen bond from the equatorial exocyclic S atom, S3…N 3.30 Å.

Experimental. A colourless prism $0.8 \times 0.4 \times 0.3$ mm, obtained from acetonitrile solution, was mounted in inert oil and transferred to the cold gas stream of the diffractometer (Siemens R3 with LT-2 low temperature attachment). 4256 intensities were registered to $2\theta_{max} = 55^{\circ}$ using monochromated Mo K α radiation (ω scans, width 1.1°, constant speed 7.3° min⁻¹, quadrant -h + k + l and some -k equivalents, index ranges $h - 8 \rightarrow 0$, $k - 16 \rightarrow 16$, l

0108-2701/91/030686-02\$03.00

 $-17\rightarrow 17$). Merging equivalents gave 2779 unique reflections ($R_{int} 0.026$), of which 2396 with $F > 4\sigma(F)$ were used for all calculations (program system Siemens *SHELXTL-Plus*). Three check reflections showed no significant intensity change. No absorp-

Table 1. Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters $(\text{\AA}^2 \times 10^4)$

	x	у	Z	U.,*
1	8372 (2)	1662 (1)	2141 (1)	206 (4)
C(1)	9529 (2)	1810 (1)	1287 (1)	253 (5)
(2)	11094 (3)	1016 (2)	1251 (1)	346 (6)
(3)	9511 (3)	1911 (l)	3153 (1)	258 (5)
(4)	9843 (3)	3034 (1)	3310 (1)	325 (6)
(5)	7442 (3)	630 (1)	2169 (1)	265 (5)
C(6)	6311 (3)	319 (1)	1170 (1)	335 (6)
(1)	4783 (1)	3651 (1)	594 (1)	177 (1)
(1)	2356 (1)	4653 (Ì)	298 (1)	202 (1)
(2)	7176 (1)	4655 (1)	1022 (1)	209 (1)
(3)	4445 (l)	3104 (1)	1933 (1)	244 (1)
(4)	5089 (1)	2799 (1)	- 559 (1)	263 (1)

* Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{ii} tensor.

© 1991 International Union of Crystallography

^{*} Lists of structure factors, anisotropic thermal parameters, bond lengths, bond angles, torsion angles, least-squares planes and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53532 (27 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.